

Understanding the Law of Propagation of Uncertainties

Emma Woolliams 4 April 2017

fiducial reference measurements for satellite ocean colour

Metrology for Earth Observation and Climate http://www.emceoc.org

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

The Law of Propagation of Uncertainties

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Things you might already "know"

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
Has a sensitivity coefficient
Adding in quadrature (% or units)
This term is to do
with correlation
Averages reduce by $1/\sqrt{n}$

Building on that starting point

$$u_{c}^{2}(y) =$$

$$\sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i})$$

$$+2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

• The Law of Propagation of Uncertainties

Has a sensitivity coefficient Adding in quadrature (% or units)

How many readings you should average

Averages reduce by $1/\sqrt{n}$

What correlation is

This term is to do with correlation

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

 $u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{i}} u(x_{i}, x_{j})$

THE LAW OF PROPAGATION OF UNCERTAINTIES

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Sensitivity Coefficients

Do an experiment to find out!

How sensitive is my result to this?

Lamp power supply: What is the sensitivity of the irradiance to the lamp current?

PTFE Sphere phase transition

How sensitive is my result to this?

Calculate it from the measurement equation

Yo terter

Analytical sensitivity coefficients

$$y = f(x_1, x_2, x_3, ...)$$

$$c_{x_i} = \frac{\partial f}{\partial x_i}$$

The local slope:

Translating a change in one parameter to a change in the other

When it works well

Very simple case

When it works well

Inverse square law leads to a 2

When it doesn't work well

- Because you can't write a relationship
- Because it's too difficult to differentiate
- Because it's a program not an equation

How sensitive is my result to this?

Radiance through double aperture system

Training

By differentiating ...

$$g_{\ell-d} = \frac{2\pi r_1^2 r_2^2}{\left(r_1^2 + r_2^2 + x^2\right) + \sqrt{\left(r_1^2 + r_2^2 + x^2\right)^2 - 4r_1^2 r_2^2}} \qquad g = 2\pi r_1^2 r_2^2 \alpha^{-1}$$

$$\beta = \sqrt{\left(r_1^2 + r_2^2 + d^2\right)^2 - 4r_1^2 r_2^2}$$
$$\alpha = \left(r_1^2 + r_2^2 + d^2\right) + \beta$$

$$\frac{\partial g}{\partial r_1} = \frac{4\pi r_1 r_2^2}{\alpha} \left[1 - \frac{r_1^2}{\alpha} \left(\frac{\alpha - 2r_2^2}{\beta} \right) \right]$$
$$\frac{\partial g}{\partial r_2} = \frac{4\pi r_1^2 r_2}{\alpha} \left[1 - \frac{r_2^2}{\alpha} \left(\frac{\alpha - 2r_1^2}{\beta} \right) \right]$$

$$\frac{\partial g}{\partial d} = \frac{-4\pi r_1^2 r_2^2 d}{\alpha \beta}$$

Or by "modelling"...

	A	В	С	D	E	F	G
4				Uncertainty in	diameter of		
5	This first section calculates g	for the straight	tforward case	microns	metres		3.1E-10
6	radius of first aperture / m	0.0025	5	1	1E-06		57.986%
7	radius of second aperture / m	0.0015	3	1	1E-06		
8	distance between apertures / m	0.3	300	40	0.00004		
9							
10	sum of squares	0.0900085			Uncertair	nty associated with g	
11	4 r1^2 r2^2	5.625E-11			due to first	aperture	0.0400%
12	square root	0.0900085	beta		due to sec	cond aperture	0.0667%
13	bottom line	0.180017	alpha		due to dist	tance	-0.0267%
14	g	4.908E-10			Combine	d uncertainty associated with g	0.082%
15							
16	This section recalculates g, cl	nanging one pa	rameter at a Changing	time			
		Changing first	second	Changing			
17		aperture	aperture	distance			
18	radius of first aperture / m	0.0025005	0.0025	0.0025			
19	radius of second aperture / m	0.0015	0.0015005	0.0015			
20	distance between apertures / m	0.3	0.3	0.30004			
21							
22	sum of squares	0.090008503	0.090008502	0.090032502			
23	4 r1^2 r2^2	5.62725E-11	5.62875E-11	5.625E-11			
24	square root	0.090008502	0.090008501	0.090032501			
25	bottom line	0.180017005	0.180017003	0.180065003			
26	g	4.910E-10	4.912E-10	4.907E-10			
27		0.0400%	0.0667%	-0.0267%			
28							
29							

Sensitivity to atmospheric model choice

```
Tuz Gölü CEOS comparison 2010
```


Monte Carlo simulation

Sensitivity Coefficients

Experimentally

Vary in the lab and see what happens

Numerically

Vary in the model and see what happens

Adding in Quadrature

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Why quadrature?

Describes the spread

Combining distributions leads to the quadrature rule Difference to the (unknowable) true value It's very unlikely that all will be maximum in same direction!

Relative uncertainty: 5 mW m⁻² nm⁻¹ \pm 0.2 % i.e. uncertainty expressed as a percentage

Absolute uncertainty:

5 mW m⁻² nm⁻¹ \pm 0.01 mW m⁻² nm⁻¹ i.e. uncertainty expressed in the native measurement units

Relative uncertainty: 5 mW m⁻² nm⁻¹ \pm 0.2 % i.e. uncertainty expressed as a percentage

Absolute uncertainty:

5 mW m⁻² nm⁻¹ \pm 0.01 mW m⁻² nm⁻¹ i.e. uncertainty expressed in the native measurement units

Adding in quadrature for absolute models

y = A + B + C $\frac{\partial y}{\partial A} = \frac{\partial y}{\partial B} = \frac{\partial y}{\partial C} = 1$

$u^{2}(y) = u^{2}(\mathbf{A}) + u^{2}(\mathbf{B}) + u^{2}(\mathbf{C})$

Adding in quadrature for absolute models

$$y = A - B$$

$$u^{2}(y) = u^{2}(\mathbf{A}) + (-1)^{2} u^{2}(\mathbf{B})$$

 $u^{2}(y) = u^{2}(A) + u^{2}(B)$

What behaves like an absolute model?

Distance = Measured + aperture thickness

Signal = Light signal – Dark signal

Relative uncertainty: 5 mW m⁻² nm⁻¹ \pm 0.2 % i.e. uncertainty expressed as a percentage

Absolute uncertainty:

5 mW m⁻² nm⁻¹ \pm 0.01 mW m⁻² nm⁻¹ i.e. uncertainty expressed in the native measurement units

Adding in quadrature for relative models

$$y = \mathbf{A} \times \mathbf{B}$$

$$\frac{\partial y}{\partial A} = B = \frac{y}{A}$$

$$\frac{\partial y}{\partial B} = A = \frac{y}{B}$$

Adding in quadrature for relative models

y = A/B

 $\frac{y}{-} = \frac{1}{-} = \frac{y}{-}$ $\partial A \quad B \quad A$

 $\frac{\partial y}{\partial R} = \frac{-A}{R^2} = \frac{-y}{R}$

Adding in quadrature for relative models

 $y = A/B^2$

$$\frac{\partial y}{\partial A} = \frac{1}{B^2} = \frac{y}{A}$$

What behaves like a relative model?

- Most radiometric equations! ۲
- Anything where uncertainties are in %

Gain = Radiance / Signal

$$L_{\rm s} = \frac{E_{\rm FEL}\beta_{0^\circ:45^\circ}}{\pi} \frac{d_{\rm cal}^2}{d_{\rm use}^2}$$

What behaves like a relative model?
• Most radiometric equations!
• Anything where uncertainties are in %
Gain = Radiance / Signal

$$L_{s} = \frac{E_{FEL}\beta_{0^{\circ}:45^{\circ}}}{\pi} \frac{d_{cal}^{2}}{d_{use}^{2}}$$

$$\frac{\partial L_{s}}{\partial \beta_{0^{\circ}:45^{\circ}}} = \frac{L_{s}}{\beta_{0^{\circ}:45^{\circ}}}$$

$$\frac{\partial L_{s}}{\partial d_{use}} = \frac{-2L_{s}}{d_{use}}$$

$$\left(\frac{u(L_{s})}{L_{s}}\right)^{2} = \left(\frac{u(E_{FEL})}{E_{FEL}}\right)^{2} + \left(\frac{u(\beta_{0^{\circ}:45^{\circ}})}{\beta_{0^{\circ}:45^{\circ}}}\right)^{2} + \left(\frac{2u(d_{use})}{d_{use}}\right)^{2}$$

$$\text{NPLION}$$

National Physical Laboratory

Training

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
 - What the 'other term' the correlation bit means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

Applying the Law of Propagation of Uncertainties to an average

Averaging three readings

$$E_{\rm M} = \frac{E_1 + E_2 + E_3}{3} \qquad \qquad \frac{\partial E_{\rm M}}{\partial E_1} = \frac{\partial E_{\rm M}}{\partial E_2} = \frac{\partial E_{\rm M}}{\partial E_3} = \frac{1}{3}$$

$$u^{2}(E_{M}) = \left(\frac{1}{3}\right)^{2} u^{2}(E_{1}) + \left(\frac{1}{3}\right)^{2} u^{2}(E_{2}) + \left(\frac{1}{3}\right)^{2} u^{2}(E_{3})$$

$$u(E_{1}) = u(E_{2}) = u(E_{3}) = u(E_{i})$$

$$u^{2}(E_{M}) = 3\left(\frac{1}{3}\right)^{2} u^{2}(E_{i}) \qquad u^{2}(E_{M}) = \left(\frac{3}{3^{2}}\right) u^{2}(E_{i})$$

$$u^{2}(E_{M}) = \left(\frac{1}{3}\right) u^{2}(E_{i}) \qquad u^{2}(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{3}}\right)^{2} \qquad u(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{3}}\right)$$

Applying the Law of Propagation of Uncertainties to an average

Averaging *n* readings

$$E_{\rm M} = \left(\sum_{i=1}^n E_i\right) / n$$

$$u^{2}\left(E_{\mathrm{M}}\right) = \left(\sum_{i=1}^{n} u^{2}\left(E_{i}\right)\right) / n$$

$$u^{2}\left(E_{\mathrm{M}}\right) = n\left(\frac{1}{n}\right)^{2}u^{2}\left(E_{i}\right) \qquad u^{2}\left(E_{\mathrm{M}}\right) = \left(\frac{1}{n}\right)u^{2}\left(E_{i}\right)$$

$$u^{2}(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{n}}\right)^{2} \qquad u(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{n}}\right)^{2}$$

 $\frac{\partial E_{\rm M}}{\partial E_i} = \frac{1}{n}$

Average light – average dark

$$\begin{split} V_{\rm s} &= \frac{1}{N} \sum_{i=1}^{N} V_{\rm light,i} - \frac{1}{M} \sum_{i=1}^{M} V_{\rm dark,j} \\ c_{V_{\rm light,i}} &= \frac{\partial V}{\partial V_{\rm light,i}} = \frac{1}{N}, \quad i = 1, \dots, N \\ c_{V_{\rm dark,j}} &= \frac{\partial V}{\partial V_{\rm dark,j}} = \frac{-1}{M}, \quad j = 1, \dots, M \end{split}$$

$$u_V^2 = \left(\frac{u_{V_{\text{light}}}}{\sqrt{N}}\right)^2 + \left(\frac{u_{V_{\text{dark}}}}{\sqrt{M}}\right)^2$$

Taking enough readings

Applying the Law of Propagation of Uncertainties to an average

Averaging three readings

$$E_{\rm M} = \frac{E_1 + E_2 + E_3}{3} \qquad \qquad \frac{\partial E_{\rm M}}{\partial E_1} = \frac{\partial E_{\rm M}}{\partial E_2} = \frac{\partial E_{\rm M}}{\partial E_3} = \frac{1}{3}$$

$$u^{2}(E_{M}) = \left(\frac{1}{3}\right)^{2} u^{2}(E_{1}) + \left(\frac{1}{3}\right)^{2} u^{2}(E_{2}) + \left(\frac{1}{3}\right)^{2} u^{2}(E_{3})$$

$$u(E_{1}) = u(E_{2}) = u(E_{3}) = u(E_{i})$$

$$u^{2}(E_{M}) = 3\left(\frac{1}{3}\right)^{2} u^{2}(E_{i}) \qquad u^{2}(E_{M}) = \left(\frac{3}{3^{2}}\right) u^{2}(E_{i})$$

$$u^{2}(E_{M}) = \left(\frac{1}{3}\right) u^{2}(E_{i}) \qquad u^{2}(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{3}}\right)^{2} \qquad u(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{3}}\right)^{2}$$

What is the uncertainty associated with each reading?

$$u(E_1) = u(E_2) = u(E_3) = u(E_i)$$

Uncertainty

Standard deviation?

Describes the spread

Values and cumulative St dev

The dangers of taking a standard deviation of a small number of readings

The dangers of taking a standard deviation from a small number of readings

Use more readings!

• Take more measurements today $u(E_{M}) = \left(\frac{u(E_{i})}{\sqrt{n}}\right) = \left(\frac{u(E_{$

Use more readings!

Have a facility commissioning phase where you take more measurements

From standard deviation of 10: $u(E_i)$

Today two readings, $\sqrt{n} = \sqrt{2}$

Use more readings!

Compare data from different days

Even if there is a drift: e.g Use standard deviation of the difference between two readings

Use more readings!

 Compare data from different wavelengths (smooth out the bumps)

Increase the estimate

• Increase standard uncertainty

Will be in revised GUM

$$u_{\text{light,mean}}^2 = \frac{N-1}{N-3} \left(\frac{s_{\text{light}}}{\sqrt{N}}\right)^2$$

Use more readings!

- Take more measurements today
- Have a facility commissioning phase
- Compare data from different days
- Compare data from different wavelengths

Increase the estimate

Increased standard uncertainty

Use more readings!

But only when it's worth it!

KNOWING WHEN TO STOP!

The metre: 1791 - 1799

Pierre-Françoise-André Méchain Jean-Baptiste-Joseph Delambre

The Measure of all Things - Ken Alder

The uncertainties don't keep dropping forever

Produced by AlaVar 5.2

The Allan Deviation – software

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

CORRELATION

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

The Law of Propagation of Uncertainties

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Correlation: Type A and Type B methods

Correlation occurs when there is something in common between the different quantities, or between the measured values being combined.

Type A: From the data

Type B: From knowledge

$$E_i = E_{\text{True}} + S + R_i$$

This is where the correlation comes from!

Systematic Effects!

Correlation: Type A and Type B methods

Correlation occurs when there is something in common between the different quantities, or between the measured values being combined.

Type A: From the data

Correlation?

http://www.tylervigen.com/

Spurious correlations

Correlation: Type A and Type B methods

Correlation occurs when there is something in common between the different parameters, or between the measurements being combined.

Calculate covariance

Remove covariance

Type B: From knowledge

$$E_i = E_{\text{True}} + S + R_i$$

This is where the correlation comes from!

Systematic Effects!

Averaging partially correlated data

$$E_i = E_{\text{True}} + S + R_i$$

$$E_{\rm M} = \frac{E_1 + E_2 + E_3}{3}$$

$$E_{\rm M} = \frac{3E_{\rm True}}{3} + \frac{3S}{3} + \frac{R_1 + R_2 + R_3}{3}$$

$$u^{2}\left(E_{\mathrm{M}}\right) = u^{2}\left(S\right) + \left(\frac{u\left(R_{i}\right)}{\sqrt{3}}\right)^{2}$$

Averaging Partially correlated data

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
$$u(E_{i}) = u^{2}(S) + u^{2}(R_{i})$$
$$u(E_{i}, E_{j}) = u^{2}(S); \quad i \neq j$$

$$E_i = E_{\text{True}} + S + R_i$$

Averaging partially correlated data

 $u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{i}} u(x_{i}, x_{j})$ $u(E_1, E_2), u(E_1, E_3), u(E_1, E_4), \dots$ $u(E_2, E_3), u(E_2, E_4), \dots$ $u(E_3, E_4), \ldots$ Training

Averaging partially correlated data

$$E_{i} = E_{\text{True}} + S + R_{i}$$
$$\frac{\partial E_{\text{M}}}{\partial E_{1}} = \frac{\partial E_{\text{M}}}{\partial E_{2}} = \frac{\partial E_{\text{M}}}{\partial E_{3}} = \frac{1}{3}$$

^a

$$E_{\rm M} = \frac{E_1 + E_2 + E_3}{3}$$

 $u(E_i) = u^2(S) + u^2(R_i)$
 $u(E_i, E_j) = u^2(S); \quad i \neq j$

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
$$u^{2}(E_{M}) = 3\left(\frac{1}{3}\right)^{2} u^{2}(S) + 3\left(\frac{1}{3}\right)^{2} u^{2}(R_{i}) + 3 \times 2 \times \left(\frac{1}{3}\right)^{2} u^{2}(S)$$

$$u^{2}(E_{M}) = (3+6)\left(\frac{1}{3}\right)^{2} u^{2}(S) + 3\left(\frac{1}{3}\right)^{2} u^{2}(R_{i})$$

$$u^{2}\left(E_{\mathrm{M}}\right) = u^{2}\left(S\right) + \left(\frac{u\left(R_{i}\right)}{\sqrt{3}}\right)^{2}$$

Systematic and random effects: Lamp measured 5 times (continued)

Systematic effects	Random effects
Reference calibration	Noise
Alignment	Lamp current fluctuation
Lamp current setting	
Temperature sensitivities	
$\int S, u(S)$	$R_i, u(R_i)$
$E_i = E_{\text{True}} + S + R_i$	
$u^{2}(E_{i}) = u^{2}(S) + u^{2}(R_{i})$	

 $u^{2}(E_{\rm M}) = u^{2}(S) + \left(\frac{u(R_{i})}{\sqrt{n}}\right)^{2}$

Averaging partially correlated data

 $u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{i=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{i}} u(x_{i}, x_{j})$ $u(E_1, E_2), u(E_1, E_3), u(E_1, E_4), \dots$ $u(E_2, E_3), u(E_2, E_4), \dots$ $u(E_3, E_4), \ldots$ Training
Covariance Matrix

 $U_{E} = 2 \begin{bmatrix} u^{2}(E_{1}) & u(E_{1}, E_{2}) & \cdots & u(E_{1}, E_{n}) \\ u(E_{2}, E_{1}) & u^{2}(E_{2}) & \cdots & u(E_{2}, E_{n}) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ u(E_{n}, E_{1}) & u(E_{n}, E_{2}) & \cdots & u^{2}(E_{n}) \end{bmatrix}$ $u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$ $u(E_1, E_2), u(E_1, E_3), u(E_1, E_4), \dots$ $u(E_2, E_3), u(E_2, E_4), \dots$ $u(E_{3}, E_{4}), \dots$ Training

Covariance Matrix Version

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

$$u^{2}(y) = C_{y}U_{x}C_{y}^{\top} \qquad C_{y} = \left(\frac{\partial f}{\partial x_{1}} \quad \frac{\partial f}{\partial x_{2}} \quad \dots \quad \frac{\partial f}{\partial x_{n}}\right)$$

$$U_{E} = \frac{1}{2} \begin{bmatrix} u^{2}(E_{1}) & u(E_{1}, E_{2}) & \cdots & u(E_{1}, E_{n}) \\ u(E_{2}, E_{1}) & u^{2}(E_{2}) & \cdots & u(E_{2}, E_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ u(E_{n}, E_{1}) & u(E_{n}, E_{2}) & \cdots & u^{2}(E_{n}) \end{bmatrix}$$

Covariance matrix with absolute variance (squared uncertainty) and covariance

Covariance matrix

$$U_{E} = 2 \begin{bmatrix} u^{2}(E_{1}) & u(E_{1}, E_{2}) & \cdots & u(E_{1}, E_{n}) \\ u(E_{2}, E_{1}) & u^{2}(E_{2}) & \cdots & u(E_{2}, E_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ u(E_{n}, E_{1}) & u(E_{n}, E_{2}) & \cdots & u^{2}(E_{n}) \end{bmatrix}$$

$$\begin{split} E\left(\lambda_{i}\right) &= E_{\mathrm{T}}\left(\lambda_{i}\right)\left(1+S\right)\left(1+R_{i}\right)+\tilde{s}+\tilde{r}_{i}\\ \tilde{U}_{E,ij} &= \begin{cases} E_{i}^{2}\left[u^{2}\left(S\right)+u^{2}\left(R_{i}\right)\right]+u^{2}\left(\tilde{s}\right)+u^{2}\left(\tilde{r}_{i}\right) & (i=j)\\ E_{i}E_{j}u^{2}\left(S\right)+u^{2}\left(\tilde{s}\right) & (i\neq j). \end{cases} \end{split}$$

Negative sensitivity coefficients

$$y = \mathbf{A} - \mathbf{B} \qquad \frac{\partial y}{\partial \mathbf{A}} = 1 \quad \frac{\partial y}{\partial \mathbf{B}} = -1$$

$$u^{2}(y) = u^{2}(A) + (-1)^{2}u^{2}(B)$$
$$u^{2}(y) = u^{2}(A) + u^{2}(B)$$

E.g. Signal = Light - Dark

Negative sensitivity coefficients

$$y = A - B$$
 $\frac{\partial y}{\partial A} = 1$ $\frac{\partial y}{\partial B} = -1$

$$u^{2}(y) = u^{2}(A) + u^{2}(B) + 2(1)(-1)u(A,B)$$
$$u^{2}(y) = u^{2}(A) + u^{2}(B) - 2u(A,B)$$

E.g. Signal = Light - Dark

Correlation reduces uncertainty

National Physical Laboratory

Training

Positive sensitivity coefficients

$$y = \mathbf{A} + \mathbf{B}$$
 $\frac{\partial y}{\partial \mathbf{A}} = 1$ $\frac{\partial y}{\partial \mathbf{B}} = 1$

$$u^{2}(y) = u^{2}(A) + u^{2}(B) + 2(1)(1)u(A,B)$$
$$u^{2}(y) = u^{2}(A) + u^{2}(B) + 2u(A,B)$$

Correlation increases uncertainty

National Physical Laboratory

Training

E.g. Distance = measured + thickness

But I don't know what the covariance is!

• Think of the worst-case scenario

Does correlation increase or decrease the uncertainty?

Treat as "all random" and "all systematic"

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

CONCLUSIONS AND SUMMARY

At the end of this module, you should understand

- The Law of Propagation of Uncertainties
 - Why the sensitivity coefficient is central to the law
 - How to determine the sensitivity coefficients
 - What 'adding in quadrature' really means
- How many readings you should average
 - What the uncertainty associated with an average is
 - How you know you have enough readings
 - When you've taken too many readings
- What correlation is
 - What the uncertainties are for averaging partially correlated data
 - How to estimate covariance from numerical and experimental data
 - How to deal with not knowing what the correlation is

Sensitivity Coefficients

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

Taking enough readings, but not too many

Correlation

Correlation occurs when there is something in common between the different parameters, or between the measurements being combined.

Calculate covariance

Remove covariance

Type B: From knowledge

$$E_i = E_{\text{True}} + S + R_i$$

This is where the correlation comes from!

Systematic Effects!

