

Listen to the ocean

## FRM4SOC Radiometric field inter-comparison at the Acqua Alta Oceanographic tower.

<sup>1</sup>Gavin Tilstone, <sup>1</sup>Giorgio
Dall'Olmo, <sup>2</sup>Davide D'Alimonte,
<sup>3</sup>Martin, <sup>4</sup>Martin Ligi, <sup>5</sup>Maycira
Costa, <sup>6</sup>Vincenzo Velluci,
<sup>7</sup>Astrid Bracher, <sup>4</sup>Joel Kuusk,
<sup>4</sup>Ilmar Ansko, <sup>4</sup>Riho Vendt.

<sup>1</sup>PML-UK, <sup>2</sup>Uni Algarve-Pt, <sup>3</sup>HZG-De, <sup>4</sup>Uni-Tartu-Ee, <sup>5</sup>Uni-Victoria-Ca, <sup>6</sup>LOV-Fr, <sup>7</sup>AWI-De.





**Fiducial Reference Measurements (FRM)** are distinct from in situ: "The suite of independent ground measurements using accepted satellite protocols, **traceable to metrology standards**, **referenced to intercomparison exercises**, with a full uncertainty budget to provide independent, high quality, satellite validation measurements for the duration of a satellite mission." **ESA S-3 Validation Team.** 

AAOT has long history of optical measurements to support and validate both NASA and ESA ocean colour missions and radiometer inter-comparisons (Zibordi et al. 2006; 2009, 2012).

## **Objectives of the FICE-AAOT:**

PML Plymouth Marine

Under the same calibration and environmental conditions, to compare  $E_d$ ,  $L_i$ ,  $L_t$  and  $R_{rs}$  between participants using their standard protocol. The comparisons included:

- Sensors (2 x HyperOCR; 5 x TRIOS-RAMSES, 1 x WISP, 2 in water; Bio-spherical & TRIOS systems).
- Methods (in & above-water).
- Above water systems measurement geometries (90° / 135°).



## Participants.



- 11 different measurement systems were compared from 9-18 July 2018.
- Absolute radiometric calibration of all sensors was carried out using the same standards and methods at the same reference laboratory (University of Tartu).
- For E<sub>d</sub>(0<sup>+</sup>,λ), there was generally good agreement with differences of <5% between institutes,.</li>
- For  $L_{sky}(\lambda)$  and  $L_t(\lambda)$  the **differences** in above water between institutes were consistently <**5**%.
- Next steps; scrutinise  $\mathbf{R}_{rs}(\lambda)$  processing.

## Thank you

PML | Plymouth Marine Laboratory





