

The steps to an uncertainty budget

Emma Woolliams 4 April 2017

Prepared by Paul Miller

fiducial reference measurements for satellite ocean colour

Metrology for Earth Observation and Climate http://www.emceoc.org EMRP European Metrology Research Programme Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

Uncertainty

- Where to start?
- What to do?
- How to be consistent?
- Make it easy.

At the end of this module, you should understand

- Uncertainty analysis is a multi-step process
 Understanding the problem
 Determining the formal relationships
 Propagating the uncertainties
- How to develop an uncertainty budget
 - 8 steps to an uncertainty budget
- There is no single right way
 - Mathematical / modelling
 - Experimental
 - Combination

8 steps to an uncertainty budget

Understanding the problem

Step 1: Describing the Traceability Chain
Step 2: Writing down the calculation equations
Step 3: Considering the sources of uncertainty

- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

UNCERTAINTY ANALYSIS IS A MULTI-STEP PROCESS

At the end of this module, you should understand

- Uncertainty analysis is a multi-step process
 Understanding the problem
 Determining the formal relationships
 Propagating the uncertainties
- How to develop an uncertainty budget
 - 8 steps to an uncertainty budget
- There is no single right way
 - Mathematical / modelling
 - Experimental
 - Combination

Understanding the problem

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
 Determining the formal relationships
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

An unbroken chain

SI

Describing the Traceability Chain

SI Units

Earth Imager

Standard lamp

Traceability: further points

Cryogenic radiometer 0.01 %

Primary irradiance standard 0.5 %

Calibration lamp use 'in situ' 1.2 %

Field spectrometer calibration 2.5 %

Vicarious calibration reference 3.2 %

Describing the Traceability Chain

Understanding the problem

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Writing down the calculation **NPL** Centre for Carbon Measurement

 $E_{\text{FEL}}\beta_{0-45}$ L_{s}

Understanding the problem

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Considering the sources of UNE A Centre for Carbon Measurement

Considering the sources of uncertainty

Lamp additional effects

- Ageing
- Alignment
- Current stability

Distance accuracy

Diffuser additional effects

- Ageing
- Uniformity

Random noise

Considering the sources of uncertainty

Determining the formal relationships

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Creating the measurement equation

Determining the formal relationships

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Determining the sensitivity coefficients

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$

- There is no single right way
 - Mathematical / modelling
 - Experimental
 - Combination

Determining the sensitivity coefficients

• Do an experiment

Analytical expression

 $y'_{n} g = n^{2} + 3\sqrt{n} - \Lambda \quad n = x^{4} + \Lambda g'_{x} = \frac{1}{2}$ $= (n^{2} + 3\sqrt{n} - \Lambda)_{n} (x^{4} + \Lambda)'_{x} = (2n^{4} + n)_{x}^{2} = (2n^{4} + n)_{x}^{2} = (2n^{4} + n)_{x}^{2} = (2x^{4} + 2 + \frac{3}{2\sqrt{x^{4}} - \Lambda})^{44} + \frac{3}{2}$ $= (\Lambda + \frac{2}{x})^{x+5} = ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + (\Lambda + \frac{2}{x})^{5} |_{x+3}^{1}$ $= ((\Lambda + \frac{2}{x})^{\frac{x}{2}})^{2} + ((\Lambda + \frac{2}{x})^{5})^{2} + ((\Lambda + \frac{2}{x})^{2})^{2} + ((\Lambda + \frac{2}{x})^{2})^{2} + ((\Lambda + \frac{2}{x})^{5})^{2} + ((\Lambda + \frac{2}{x})^{2})^{2} + ((\Lambda + \frac{2}{x})^{2})^{2$

Determining the formal relationships

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Assigning uncertainties

Uncertainty component	Associated uncertainty		(relative)	Uncertainty
	absolute	relative	Sensitivity coefficient	associated with radiance due to this
Lamp irradiance (calibration)		0.30%	1	0.30%
Diffuser reflectance factor (calibration)		0.30%	1	0.30%
Lamp-diffuser distance (same as calibration distance for lamp)?	1 mm in 500 mm	0.20%	2	0.40%
Stability of lamp (short term)		0.10%	1	0.10%
Stability of lamp (drift/ageing)		0.10%	1	0.10%
Alignment of lamp				0.05%
Current stability of lamp (at 350 nm)	3 mA			0.29%
Diffuser stability (ageing)		0.10%	1	0.10%
Uniformity of diffuser		0.50%	1	0.50%

 $L_{\rm s} = \frac{E_{\rm FEL}\beta_{0.45}}{\pi} \frac{d_{\rm cal}^2}{d_{\rm use}^2} K_{\rm lamp_stab} K_{\rm align} K_{\rm current} K_{\rm diff_stab} K_{\rm unif}$

Propagating the uncertainties

- Understanding the problem Step 1: Describing the Traceability Chain Step 2: Writing down the calculation equations Step 3: Considering the sources of uncertainty Determining the formal relationships Step 4: Creating the measurement equation Step 5: Determining the sensitivity coefficients Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Combining and propagating **NPI** uncertainties

$$u_{c}^{2}(y) = \sum_{i=1}^{n} \left(\frac{\partial f}{\partial x_{i}}\right)^{2} u^{2}(x_{i}) + 2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{\partial f}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} u(x_{i}, x_{j})$$
Has a sensitivity coefficient
Adding in quadrature (% or units)
Averages reduce by $1/\sqrt{n}$

Combining and propagating uncertainties

$$u(\mathbf{X}) = 5.20\%$$

Propagating the uncertainties

- Understanding the problem
 - Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties

Expanding uncertainties

If the distribution is not Gaussian, then a different coverage factor is needed.

At the end of this module, you should understand

- Uncertainty analysis is a multi-step process
 Understanding the problem
 Determining the formal relationships
 Propagating the uncertainties
- How to develop an uncertainty budget
 - 8 steps to an uncertainty budget
- There is no single right way
 - Mathematical / modelling
 - Experimental
 - Combination

8 steps to an uncertainty budget

- Understanding the problem
 Step 1: Describing the Traceability Chain
 Step 2: Writing down the calculation equations
 Step 3: Considering the sources of uncertainty
- Determining the formal relationships
 Step 4: Creating the measurement equation
 Step 5: Determining the sensitivity coefficients
 Step 6: Assigning uncertainties
- Propagating the uncertainties
 Step 7: Combining and propagating uncertainties
 Step 8: Expanding uncertainties