

Measurement Equation Agnieszka Bialek 4rd April 2017

fiducial reference measurements for satellite ocean colour

Metrology for Earth Observation and Climate http://www.emceoc.org

Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union

At the end of this module, you should understand

- The difference between calculation and measurement equations
 - Why the measurement equation has more components
 - Where do they come from

- How to develop a measurement equation
 - How to evaluate additional components in the measurement equation
 - When to stop adding them
- How to determine the sensitivity coefficients
 - Analytically
 - Modelling
 - Lab experiment

At the end of this module, you should understand

The difference between calculation and measurement equations • Why the measurement equation has more components Where do they come from Integrating Lampsphere diffuser How to develop a measurement equation • How to evaluate additional components in the measurement equation • When to stop adding them How to determine the sensitivity coefficients • Analytically Modelling Lab experiment

Laboratory based Lamp – diffuser method

RADIANCE CALIBRATION 1

At the end of this section, you should understand

- The difference between calculation and measurement equations
 - Why the measurement equation has more components
 - Where do they come from

Lampdiffuser

- How to develop a measurement equation
 - How to evaluate additional components in the measurement equation
 - When to stop adding them
- How to determine the sensitivity coefficients
 - Analytically
 - Modelling
 - Lab experiment

Steps to an uncertainty budget

- 1. Traceability Chain
- 2. Calculation Equation
- 3. Sources of Uncertainty
- 4. Measurement Equation
- 5. Sensitivity Coefficients
- 6. Assigning Uncertainties
- 7. Combining your uncertainties
- 8. Expanding your uncertainties

Symbol	Uncertainty component	Size of effect	Correction applied?	Residual uncertainty	Divisor	Sensitivity coefficient	Uncertainty associated with final value due to effect	
	Combined standard uncertainty							
	Expanded uncertainty							

Step 1: Traceability chain

Step 2: Calculation equations

Step 3: Sources of uncertainty

Calibration certificate Lamp additional effects

- Ageing
- Alignment
- Current stability

Calibration certificate

Diffuser additional effects

- Ageing
- Uniformity

Random noise

Instrument additional effects

- Stability (drift)
- Room stray light

Distance accuracy

Step 4: Measurement equations

$$L_{\rm s} = \frac{E_{\rm FEL}\beta_{0:45}}{\pi} \frac{d_{\rm cal}^2}{d_{\rm use}^2}$$

$$L_{\rm s} = \frac{E_{\rm FEL}\beta_{0:45}}{\pi} \frac{d_{\rm cal}^2}{d_{\rm use}^2} K_{\rm lamp_stab} K_{\rm align} K_{\rm current} K_{\rm diff_stab} K_{\rm unif}$$

$$V_{\rm S} = V_{\rm light} - V_{\rm dark}$$

 $V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm stray} - V_{\rm dark} K_{\rm dark_stab}$

Steps to an uncertainty budget

- 1. Traceability Chain
- 2. Calculation Equation
- 3. Sources of Uncertainty
- 4. Measurement Equation
- 5. Sensitivity Coefficients
- 6. Assigning Uncertainties
- 7. Combining your uncertainties
- 8. Expanding your uncertainties

Sensitivity coefficients (1)

By differentiation

Easy to derive for *calculation equation* components of this particular example

Component X _i	Sensitivity coefficient $c_i = \frac{\partial f}{\partial x_i}$	Relative radiance uncertainty due to $c_i \mu(x_i)$
Lamp irradiance E_{FEL}	$L_{ m s}/E_{ m FEL}$	$1 \cdot u(E_{\text{FEL}})/E_{\text{FEL}}$
Radiance factor $\beta_{0:45}$	$L_{ m s}/eta_{ m 0:45}$	$1 \cdot u(\beta_{0:45})/\beta_{0:45}$
Distance d_{use}^2	$-2L_{\rm s}/d_{\rm use}$	$-2 \cdot u(d_{use})/d_{use}$
$\left(\frac{u(L)}{L}\right)^2 =$	$\left(\frac{u(E_{\text{FEL}})}{E_{\text{FEL}}}\right)^{2} + \left(\frac{u(\beta_{0:45})}{\beta_{0:45}}\right)^{2} + \left(\frac{u(\beta_{0:45})}{\beta_{0:45}}\right)^{2}$	$+(-2)^2 \left(\frac{u(d_{\rm use})}{d_{\rm use}}\right)^2$

Uncertainties of components (1)	calculation equation	From calibration certificates			
Component <i>X_i</i>	Sensitivity coefficient $c_i = \frac{\partial f}{\partial x_i}$	Relative radiance uncertainty due to $c_i \mu(x_i)$			
Lamp irradiance E _{FEL}	$L_{ m s}/E_{ m FEL}$	$1 \cdot u(E_{\text{FEL}})/E_{\text{FEL}}$			
Radiance factor $\beta_{0:45}$	$L_{ m s}/eta_{ m 0:45}$	$1 \cdot u(\beta_{0:45}) / \beta_{0:45}$			
Distance d_{use}^2	$-2L_{\rm s}/d_{\rm use}$	$-2 \cdot u(d_{use})/d_{use}$			
$\left(\frac{u(L)}{L}\right)^2$	$^{2} = \left(\frac{u(E_{\text{FEL}})}{E_{\text{FEL}}}\right)^{2} + \left(\frac{u(\beta_{0:45})}{\beta_{0:45}}\right)^{2}$	$\bigg)^{2} + \left(-2\right)^{2} \left(\frac{u\left(d_{\text{use}}\right)}{d_{\text{use}}}\right)^{2}$			

Certificate uncertainties (1)

E FEL

 π

 $\beta_{0:45}$

use

From calibration certificates

Wave-	Absolute Spectral	
length	Irradiance	Uncertainty
nm	mW m ⁻² nm ⁻¹	%
545	4.37	1.5
550	4.54	1.5
555	4.72	1.5
560	4.89	1.4
565	5.07	1.6
570	5.24	1.5
575	5.42	1.5
580	5.60	1.4
585	5.78	1.5
590	5.96	1.4
595	6.14	1.4
600	6.31	1.3
605	6.48	1.3
610	6.65	1.3
615	6.83	1.3
620	7.00	1.2
625	7.18	1.2
630	7.35	1.2
635	7.52	1.3
640	7.68	1.3

 $\frac{C_{\text{cal}}}{2} K_{\text{lamp_stab}} K_{\text{align}} K_{\text{current}} K_{\text{diff_stab}} K_{\text{unif}}$

Remember calibration certificates almost always quote uncertainties at k = 2 !

Certificate uncertainties (2)

Radiometric quantities integrated over passband function of radiometer being calibrated, allowing for its spectral response function; may require interpolation

See course book Chapter 7 for more details about integration and interpolation

Wavelength [nm]	Spectral Irradiance [W/(cm² nm)]
250	1.831E-08
260	3.198E-08
270	5.264E-08
280	8.263E-08
290	1,247E-07
300	1.813E-07
310	2.555E-07
320	3.501E-07
330	4.678E-07
340	6.121E-07
350	7.854E-07
360	9.868E-07
370	1.2205-06
380	1.485E-06
390	1.791E-06
400	2.119E-06
450	4.281E-06
500	7.078E-06
555	1.051E-05
600	1.323E-05
654.6	1.624E-05
700	1.829E-05
800.	2.117E-05
900 -	2.212E-05
1050	2.104E-05
1150 *	1.944E-05

 $K_{align} K_{current} K_{diff_{stab}} K_{unif}$

390
400
450
500
555
600
654.6
700
800,
900 👾
1050
1150
National Physical Laboratory

Certificate uncertainties (3)

Certificate may not give required quantity (modelling may be needed to obtain desired quantity): read it carefully!

Measurement equation: allowing for additional effects

Uncertainties of calculation equation components (2)

e.g. from resolution of distance measuring instrument

Component <i>X_i</i>	Sensitivity coefficient $c_i = \frac{\partial f}{\partial x_i}$	Relative rad uncertainty c _i µ	ance due to $y(x_i)$
Lamp irradiance E _{FEL}	$L_{ m s}/E_{ m FEL}$	$1 \cdot u(E_{\rm FI})$	$_{\rm L})/E_{\rm FEL}$
Radiance factor $\beta_{0:45}$	$L_{ m s}/eta_{ m 0:45}$	$1 \cdot u(\beta_{0:4})$	$(5)/eta_{0:45}$
Distance d_{use}^2	$-2L_{\rm s}/d_{\rm use}$	$-2 \cdot u(d_u)$	$(se)/d_{use}$
$\left(\frac{u(L)}{L}\right)^2$	$^{2} = \left(\frac{u(E_{\text{FEL}})}{E_{\text{FEL}}}\right)^{2} + \left(\frac{u(\beta_{0:45})}{\beta_{0:45}}\right)^{2}$	$\bigg)^2 + \left(-2\right)^2 \bigg(\frac{u}{d}\bigg)^2$	$\left(\frac{d_{\rm use}}{d_{\rm use}}\right)^2$

Rectangular uncertainty distributions

Resolution of distance measuring instrument = 0.1 mm

Measurement distance = 500.0 mm

Uncertainty associated with distance measurement = $(0.05 / 500) / \sqrt{3} = 0.006 \%$

Uncertainty in irradiance from distance measurement = $2 \times 0.006 \% = 0.012 \%$

Uncertainties of calculation equation components (3)

$$\left(\frac{u(L)}{L}\right)^{2} = \left(\frac{u(E_{\text{FEL}})}{E_{\text{FEL}}}\right)^{2} + \left(\frac{u(\beta_{0:45})}{\beta_{0:45}}\right)^{2} + \left(-2\right)^{2} \left(\frac{u(d_{\text{use}})}{d_{\text{use}}}\right)^{2}$$

Symbol	Uncertainty component	Size of effect	Correction applied?	Residual uncertainty	Divisor	Sensitivity coefficient	Uncertainty associated with final value due to effect
$u(E_{\rm FEL})$	Ref. lamp irradiance	1.5 %	N	1.5 %	2	1	0.75 %
$u(\beta_{0:45})$	Tile radiance factor	2.0 %	N	2.0 %	2	1	1.00 %
$u(d_{use})$	Lamp distance (500 mm)	0.05 mm	N	0.01 %	√3	2	0.012 %
$u(d_{use})$							
$u(d_{use})$							
$u(d_{use})$							
$u(d_{use})$							
$u(d_{use})$							
$u(d_{use})$							
$u(d_{use})$							
$u(d_{use})$							
Combined standard uncertainty							
		Ex	panded uncertain	ity			

Uncertainty of additional effects (1)

Repeat measurements with realignment of the lamp

Uncertainty of additional effects (2)

• Negligible instrument drift in controlled lab environment

0.7 DN change during45 minute constant run

$$V_{\rm S} = V_{\rm light} \overline{K_{\rm light}} + K_{\rm stray} - V_{\rm dark} \overline{K_{\rm dark}}$$

Uncertainty of additional effects (3)

$$V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm stray} - V_{\rm dark} K_{\rm dark_stab}$$

Uncertainty of additional effects (4)

NPL Management Ltd - In Confidence

National Physical Laboratory

Training

Uncertainty of additional effects (5)

Uncertainty of additional effects (6)

• Room stray light negligible

Difference between detector dark reading and measurement with detector FOV obscured smaller than standard deviation of individual dark runs

 $V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm stray} - V_{\rm dark} K_{\rm dark\ stab}$

Uncertainty of additional effects (7)

$$V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm stray} - V_{\rm dark} K_{\rm dark_stab}$$

Uncertainty of additional effects (8)

Relationship between lamp current and irradiance modelled by:

- 1. Consider effect of change in current on lamp power ($P_{\text{elec}} \propto l^2$)
- 2. Assume direct relationship between lamp electrical and optical power
- 3. Assume lamp behaves similarly to blackbody radiator for small changes in power i.e. relationship between power and temperature is $P_{opt} \propto T^4$
- 4. So $P \propto T^4$ or $T \propto I^{0.5}$. Relative change in T is half relative change in I
- 5. Determine spectral change in irradiance for BB associated with change in T

Lamp current effect by modelling

- Suppose:
 - Lamp current uncertainty is 0.020 A
 - Lamp current is 8.000 A
 - Lamp CCT is 3000 K
- Therefore, by modelling:
 - *u*(*I*) = 0.25 %
 - u(T) = 0.125 % (relative change in T is half relative change in I)
 - Absolute uncertainty in T at 3000 K = 3.8 K
 - Using Planck equation:
 - Uncertainty in spectral irradiance is 1.70 % at 350 nm
 - Uncertainty in spectral irradiance is 0.99 % at 600 nm

Lamp current effect by measurement

- Suppose:
 - Lamp current uncertainty is 0.020 A
 - Lamp current is 8.000 A
 - Lamp CCT is 3000 K
- We can **measure** the effect by:
 - Measuring irradiance at a current of 8.000 A
 - Measuring irradiance at a current of (say) 7.800 A (needs to be large enough difference to enable effect to be measured reliably)
 - $u(E_{\text{current}}) = 0.1 \text{ x}$ observed relative change in irradiance due to 0.200 A change in current

More details in course notes

Uncertainty of additional effects (9)

$$V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm stray} - V_{\rm dark} K_{\rm dark_stab}$$

Uncertainty of additional effects (10)

Measured uniformity and consideration of where radiometer is placed

Worst case uncertainty is ± 1.5 %

Even if diffuser is perfectly uniform, non-uniformity due to lamp irradiance can be large, especially at short distances (inverse square law)

Symbol	Uncertainty component	Size of effect	Correction applied?	Residual uncertainty	Divisor	Sensitivity coefficient	Uncertainty associated with final value due to effect
$u(E_{FEL})$	Ref. lamp irradiance	1.5 %	N	1.5 %	2	1	0.75 %
$u(\beta_{0:45})$	Tile radiance factor	2.0 %	N	2.0 %	2	1	1.00 %
$u(d_{use})$	Lamp distance (500 mm)	0.05 mm	N	0.01 %	√3	2	0.012 %
$u(K_{align})$	Lamp alignment	0.15 %	N	0.15 %	1	1	0.15 %
$u(K_{l_{stab}})$	Light reading stability	negligible	N	negligible			negligible
$u(K_{d_{stab}})$	Dark reading stability	negligible	N	negligible			negligible
$u(K_{lamp_{stab}})$	Lamp stability	0.083 %	N	0.083 %	√3	1	0.048 %
$u(K_{diff_{stab}})$	Diffuser stability	0.125 %	N	0.125 %	√3	1	0.072 %
$u(K_{\text{stray}})$	Stray light in lab	negligible	N	negligible			negligible
u(K _{current})	Lamp current (8.000 A)	0.004 A	N	0.25 % in <i>I</i> , or 0.99 % in <i>E_{FEL}</i> at 600 nm	√3	1	0.572 % (at 600 nm)
$u(K_{\text{unif}})$	Radiance uniformity	1.50 %	Ν	1.50 %	√3	1	0.866 %
Combined standard uncertainty							
		Expande	d uncertainty (<i>k</i> =	=2)			3.3 %

Uncertainty components

Uncertainty components

Uncertainty components

Uncertainty components

Uncertainty components

Laboratory based Integrating sphere

RADIANCE CALIBRATION 2

At the end of this module, you should understand

The difference between calculation and measurement equations • Why the measurement equation has more components Where do they come from Integrating sphere How to develop a measurement equation • How to define additional components in the measurements equation • When to stop adding them • How to determine the sensitivity coefficients • Analytically Modelling Lab experiment

Traceability chain

Calculation equations

Sources of uncertainty

Calibration certificate Random noise

Instrument additional effects

- Stability (drift)
- Room stray light
- Environmental sensitivity

Sphere effects

- Ageing
- Uniformity
- Stability
- Back reflection
- Environmental sensitivity

Random noise

Instrument additional effects

- Stability (drift)
- Room stray light

$$V_{\rm S} = V_{\rm light} - V_{\rm dark}$$

$$V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm stray} - V_{\rm dark} K_{\rm dark_stab}$$

$$V_{\rm S} = V_{\rm light} - V_{\rm dark}$$

$$V_{\rm S} = V_{\rm light} - V_{\rm dark}$$

$$V_{\rm S} = V_{\rm light} K_{\rm light_stab} + K_{\rm strav} - V_{\rm dark} K_{\rm dark_stab}$$

By measurement, using a small baffle to prevent direct radiation from sphere reaching detector

$$L_{\rm s} = V_{\rm TR} G_{\rm TR}$$

$$L_{\rm s} = (V_{\rm TR_light} - V_{\rm TR_dark})G_{\rm TR}K_{\rm TR_dft}K_{\rm stray}K_{\rm temp}K_{\rm lin}$$
$$K_{\rm sph_stab}K_{\rm sph_temp}K_{\rm reflect}K_{\rm sph_age}$$

$$L_{\rm s} = V_{\rm TR} G_{\rm TR}$$

$$L_{\rm s} = (V_{\rm TR_light}) - (V_{\rm TR_dark}) G_{\rm TR} K_{\rm TR_dft} K_{\rm stray} K_{\rm temp} K_{\rm lin}$$
$$K_{\rm sph_stab} K_{\rm sph_temp} K_{\rm reflect} K_{\rm sph_age}$$

Uncertainty due to noise on these evaluated by statistical analysis of repeated measurements

 $L_{\rm s} = V_{\rm TR} G_{\rm TR}$

$$L_{s} = (V_{TR_light} - V_{TR_dark})G_{TR}K_{TR_dft}K_{stray}K_{temp}K_{lin}$$

$$K_{sph_stab}K_{sph_temp}K_{reflect}K_{sph_age}$$
Stability of sphere during
measurements; included in
measurement of noise on detector
signals and therefore taken as zero
to avoid 'double counting'

$$L_{\rm s} = V_{\rm TR} G_{\rm TR}$$

$$L_{s} = (V_{TR_light} - V_{TR_dark})G_{TR}K_{TR_dft}K_{stray}K_{temp}K_{lin}$$

$$K_{sph_stab}K_{sph_temp}K_{reflect}K_{sph_age}$$
From calibration
certificate

$$L_{\rm s} = V_{\rm TR} G_{\rm TR}$$

$$L_{s} = (V_{TR_light} - V_{TR_dark})G_{TR}K_{TR_dft}K_{stray}K_{temp}K_{lin}$$
$$K_{sph_stab}K_{sph_temp}K_{reflect}K_{sph_age}$$
Historical calibration records; data from other researchers

sph_temp

$$L_{\rm s} = V_{\rm TR} G_{\rm TR}$$

 $L_{\rm s} = (V_{\rm TR_light} - V_{\rm TR_dark})G_{\rm TR}K_{\rm TR_dft}K$ stray tem lin

sph_age

By measurement e.g. by systematic investigation of change in signal as temperature of transfer radiometer or sphere is changed

reflec

 $L_{\rm s} = V_{\rm TR} G_{\rm TR}$

$$L_{\rm s} = (V_{\rm TR_light} - V_{\rm TR_dark})G_{\rm TR}K_{\rm TR_dft}K_{\rm stray}K_{\rm temp}K_{\rm lin}$$
$$K_{\rm sph_stab}K_{\rm sph_temp}K_{\rm reflect}K_{\rm sph_age}$$

e.g. experimental investigation of change in reflectance of sphere coating following exposure to sphere light source, 'sphere equation' relating reflectance to sphere throughput, and time for which lamps have been operated between calibration with transfer radiometer and measurement with test radiometer By modelling or from repeated measurements using reference detector

 $A_{\rm L} = \frac{L_{\rm s}}{V_{\rm s}}$

$$\left(\frac{u\left(L_{s}\right)}{L_{s}}\right)^{2} = \frac{\left(u^{2}\left(V_{\text{TR_light}}\right) + u^{2}\left(V_{\text{TR_dark}}\right)\right)}{\left(V_{\text{TR_light}} - V_{\text{TR_dark}}\right)^{2}} \left(\frac{u\left(G_{\text{TR}}\right)}{G_{\text{TR}}}\right)^{2} + u^{2}\left(K_{\text{TR_dft}}\right) + u^{2}\left(K_{\text{stray}}\right) + u^{2}\left(K_{\text{temp}}\right) + u^{2}\left(K_{\text{lin}}\right) + u^{2}\left(K_{\text{lin}}\right) + u^{2}\left(K_{\text{sph_temp}}\right) + u^{2}\left(K_{\text{reflect}}\right) + u^{2}\left(K_{\text{sph_age}}\right) + u^{2}\left(K_{\text{sph_stab}}\right)$$

Note: in this analysis, assume that uncertainties due to noise on readings and stray are negligible for test radiometer, so relative uncertainty associated with $A_{\rm L}$ is same as that associated with $L_{\rm S}$

Symbol	Uncertainty component	Size of effect	Correction applied?	Residual uncertainty	Divisor	Sensitivity coefficient	Uncertainty associated with final value due to effect	
$u(V_{\text{TR_light}})$	Transfer radiometer light rdg	0.001 %	Ν	0.001 %	1	1	0.001 %	
$u(V_{\mathrm{TR}_{\mathrm{dark}}})$	Transfer radiometer light rdg	0.001 %	Ν	0.001 %	1	1	0.001 %	
$u(G_{\rm TR})$	Transfer radiometer gain	3.0 %	N	3.0 %	2	1	1.50 %	
$u(K_{\text{TR_drift}})$	Transfer radiometer change since calibration	0.5 %	Ν	0.5 %	√3	1	0.289 %	
$u(K_{\text{stray}})$	Stray light with transfer radiometer	negligible	Ν	negligible			negligible	
u(K _{temp})	Temperature effects for transfer radiometer	negligible	Ν	negligible			negligible	
$u(K_{\rm lin})$	Transfer radiometer linearity	0.083 %	Ν	0.083 %	√3	1	0.048 %	
$u(K_{sph_temp})$	Temperature effects for sphere	negligible	N	negligible			negligible	
$u(K_{reflect})$	Inter-reflections between radiometers and sphere	0.125 %	Ν	0.125 %	√3	1	0.072 %	
$u(K_{sph_age})$	Ageing of sphere	0.125 %	N	0.125 %	√3	1	0.072 %	
$u(K_{\rm sph_stab})$	Sphere stability during measurements	Included in $u(V_{\mathrm{TR_light}})$ and $u(V_{\mathrm{TR_dark}})$	Ν	0 %	1	1	0 %	
Combined standard uncertainty								
Expanded uncertainty (<i>k</i> =2)								

Note: in this analysis, assume that uncertainties due to noise on readings and stray are negligible for test radiometer, so relative uncertainty associated with $A_{\rm L}$ is same as that associated with $L_{\rm S}$

Symbol	Uncertainty component	Size of effect	Correction applied?	Residual uncertainty	Divisor	Sensitivity coefficient	Uncertainty associated with final value due to effect
$u(V_{\text{TR_light}})$	Transfer radiometer light rdg	0.001 %	Ν	0.001 %	1	1	0.001 %
$u(V_{\rm TR_dark})$	Transfer radiometer light rdg	0.001 %	Ν	0.001 %	1	1	0.001 %
$u(G_{\rm TR})$	Transfer radiometer gain	3.0 %	N	3.0 %	2	1	1.50 %
$u(K_{\text{TR_drift}})$	Transfer radiometer change since calibration	0.5 %	Ν	0.5 %	√3	1	0.289 %
$u(K_{\text{stray}})$	Stray light with transfer radiometer	negligible	Ν	negligible			negligible
$u(K_{temp})$	Temperature effects for transfer radiometer	negligible	Ν	negligible			negligible
$u(K_{\rm lin})$	Transfer radiometer linearity	0.083 %	N	0.083 %	√3	1	0.048 %
$u(K_{sph_temp})$	Temperature effects for sphere	negligible	Ν	negligible			negligible
$u(K_{\text{reflect}})$	Inter-reflections between radiometers and sphere	0.125 %	Ν	0.125 %	√3	1	0.072 %
$u(K_{sph_age})$	Ageing of sphere	0.125 %	N	0.125 %	√3	1	0.072 %
$u(K_{\rm sph_stab})$	Sphere stability during measurements	Included in $u(V_{\mathrm{TR_light}})$ and $u(V_{\mathrm{TR_dark}})$	Ν	0 %	1	1	0 %
Combined standard uncertainty							
Expanded uncertainty (<i>k</i> =2)							

Note: in this analysis, assume that uncertainties due to noise on readings and stray are negligible for test detector, so relative uncertainty associated with $A_{\rm L}$ is same as that associated with $L_{\rm S}$

CONCLUSIONS

Conclusions

- 1. Traceability Chain
 - Show linkage back to 'point of trust'
- 2. Calculation Equation
 - Equation for each step in measurement process / step in chain
- 3. Sources of Uncertainty
 - Consider all factors that may affect result for each calculation equation
- 4. Measurement Equation
 - Include all sources of uncertainty
 - Types of uncertainty (multiplicative, additive)
- 5. Sensitivity Coefficients
 - Mathematically, from experimental investigations, or by modelling
- 6. Assigning Uncertainties
 - Other information (e.g. certificates, historical data, other researchers), statistical analysis, experimental studies, modelling, or combination
- 7. Combining your uncertainties
 - When to stop
- 8. Expanding your uncertainties

