FRM4SOC LCE-2 Data and results to be submitted by the participants

Ilmar Ansko

Toravere 2017

Content

General rules for dataInstrument specific

Calibration standards

Calibration sources + certificates from NPL
Reflectance standard calibrated at NPL during LCE-1
Auxiliary equipment (logging hardware, environment, distance etc.): from Estonian and Finnish NMI's)

Instrument calibration data

Calibrated at TO during LCE-2
File formats following existing examples
Certificates will be provided after LCE-2
Raw data available on demand
Clarification of the measurement conditions etc.

LCE-2 exercises

Instrument calibration
Indoor exercise: irradiance
Indoor exercise: radiance
Primary outdoor exercise: L_d, L_u, E_d
Secondary outdoor exercise: E_d, L_w (R_{rs})
Auxiliary data during the fieldwork provided by TO

General rules for data

•Tab delimited text files •Short self-explaining filenames •Descriptive file and column headers •First column: pixel/channel no. •Second column: wavelength •Following columns: sensor radiometric reading •Data divided into casts/series •Outliers filtered out or corrected •Timestamps (GMT recommended) •Integration times, gains, temperatures (when available) •Metadata if relevant (scene description etc.) •Average and stdev of average over series/casts

Indoor exercises: radiance, irradiance

For intercomparison:
Radiance/irradiance values calculated by participants based on measured data and provided calibration
Averaged over series
Uncertainty budget
Spectral data interpolated to 2.5 nm step
All calculation steps/corrections explained

On demand: raw and intermediate datafiles

Primary outdoor exercise

For intercomparison:
•E_d, L_d, L_u values
•Averaged over casts
•Uncertainty budget
•Calculated for OLCI channels
•All calculation steps/corrections explained

On demand: raw and intermediate datafiles

Secondary outdoor exercise

For intercomparison:
•E_d, L_w, (R_{rs}) values
•Averaged over casts
•Measurement geometry
•Uncertainty budget
•Calculated for OLCI channels
•All calculation steps/corrections explained

On demand: raw and intermediate datafiles

Instrument classes

TriOS RAMSES ARC, ACC SATLANTIC HyperOCR, OCR-3000 WISP3 Spectral Evolution RS-3500 CIMEL CE318

TriOS RAMSES ARC, ACC

Documented protocol
Raw ADC data available
Background (dark non-uniformity) and black pixels
SAMIP pixel no. 32 issue

Satlantic HyperOCR, OCR-3000

Well-documented protocol
Raw ADC data available
Output: binary
Proprietary or third-party software
Internal mechanical shutter
Selectable dark frames freq.: every 5th during calibration

WISP3

Optical inputs for E_d , L_d , L_u Ocean Optics JAZ spectrometer inside Water Insight WISP script used during LCE-2 Output: text files Not raw: modified for dark and linearity, smoothed Integration time not accessible No comments - timestamp only! Selectable averaging (field work) Illumination needed for all 3 inputs!

Spectral Evolution RS-3500

Only the VIS-NIR module used during LCE-2 Proprietary software Output: text files Cal factors not accessible Dark subtracted internally Selectable averaging and integration times Selectable input configuration (affects the cal coefs)

CIMEL CE318

Multispectral (OLCI channels)
Raw sensor output voltages
Using robot for second outdoor only
Measurement scenarios

