

esa

fiducial reference measurements for satellite ocean colour

Laboratory exercise LCE-2 in the framework of FRM4SOC

FRM4SOC

https://frm4soc.org

Riho Vendt (TO)

Fiducial Reference Measurements

- the suite of independent ground measurements
- that provide the maximum scientific utility/return on investment for a satellite mission
- by delivering, to users, the required confidence in data products,
- in the form of independent validation results and satellite measurement uncertainty estimation,
- over the duration of the mission.

C. J. Donlon, P. J. Minnett, N. Fox, W. Wimmer, "Chapter 5.2 - Strategies for the Laboratory and Field Deployment of Ship-Borne Fiducial Reference Thermal Infrared Radiometers in Support of Satellite-Derived Sea Surface Temperature Climate Data Records," in *Optical Radiometry for Ocean Climate Measurements*, vol. 47, Academic Press, 2014, pp. 557–604.

The FR Measurements must

- have documented **traceability to SI** (calibration, comparison);
- be independent from the satellite retrieval process;
- have evaluated uncertainty budgets for all FRM instruments and measurements procedures available and maintained;
- defined and adhered protocols/community-wide management practices (measurement, processing, archive, documents etc.);
- be openly and freely available for independent scrutiny.

Objectives of FRM4SOC

- Establish and maintain SI traceability of ground-based FRM for satellite Ocean Colour Radiometry with relevant uncertainty budgets
- Set up the **protocols** for an international ongoing reference measurement system for the validation of satellite ocean colour.
- Support that the ESA Sentinel satellite measurements of ocean colour (MSI on Sentinel 2 and OLCI on Sentinel 3) are of the highest quality possible

WKP – 1 Workshop on vicarious adjustment	ACRI
OCR FRM Description, Measurement Procedures Protocols	and
LCE-1 Verification of reference irradiance and radiance sources	NPL O
LCE-2 Verification of OC radiometer calibration	TARTU OBSERVATORY space research centre
FICE – OC Field Inter-comparison experiments	PML Plymouth Marine Laboratory
Compilation of uncertainty budgets	NPL O

LCE-1 3 – 7 April 2017 at NPL, Teddington, UK Comparison of Reference Irradiance and Radiance Sources at NPL

PN

Plymouth Marine Laboratory

LCE-2 8 – 13 May 2017 at TO, Tõravere, Estonia

1. TO calibrates all participating radiometers

2. Participants measure the targets under controlled laboratory conditions

Plymouth Marine Laboratory

LCE-2 outdoor intercomparison - Lake Kääriku, 8 – 13 May 2017

Plymouth Marine Laboratory

27. Sept-Oct 2017.

between UK & South

Atlantic on a NERC ship.

AMT cruises are conducted

FICE experiments will be conducted on two platforms which have a long history of satellite ocean colour validation and development during NASA and ESA missions (O'Reilly et al. 1998; Zibordi et al. 2006).

1. The Acqua Alta Oceanographic Tower

(AAOT), Gulf of Venice, Italy. 8 days, in **July 2018**.

Purpose built steel tower with instrument house platform to conduct optical measurements under stable conditions to tilt and roll and illumination geometry.

Plymouth Marine aboratory

AMT passes through a wide range of environmental conditions and biogeochemical provinces.

Uncertainty Budgets

UNCERTAINITY COMPONENTS	SELECTED SPECTRAL BANDS OF THE SENTINEL 3 OLCI SENSOR			
	400 nm	442.5 nm	490 nm	560 nm
FEL standard lamp irradiance	0.78 %	0.61 %	0.61 %	0.61 %
Interpolation of irradiance	0.2 %	0.2 %	0.2 %	
Lamp ageing	0.28 %	0.28 %	0.28 %	
Shunt	0.002 %	0.002 %		0.002 1
Lamp current	0.15 %	0.15 %		TT
Distance lamp - sensor	0.08 %			-1
Alignment of lamp position	0.1 %		0.1 1	T
Alignment of radiometer	J.T.T.	1 11	TTL	1
Temperature variability	100-		L	T
Expanded uncertainity, k=2	11		111.	

Wavelength) [nm]

Deriving a full uncertainty budget for the laboratory calibration exercises:

- Will follow the GUM Guide to the expression of Uncertainty in Measurement
 - The foremost authority and guide to the expression and calculation of uncertainty in measurement science
 - ✓ Written by the JCGM and BIPM

http://www.bipm.org/en/publications/guides/gum.html

Contact information and updates

frm4soc.org <u>riho.vendt@to.ee</u>

craig.donlon@esa.int

#frm4soc

